Quantum Mechanics
Concepts and Applications
Second Edition

Nouredine Zettili
Jacksonville State University, Jacksonville, USA
Contents

Preface xiii

1 **Origins of Quantum Physics** 1
 1.1 Historical Note .. 1
 1.2 Particle Aspect of Radiation 4
 1.2.1 Blackbody Radiation 4
 1.2.2 Photovoltaic Effect 10
 1.2.3 Compton Effect 13
 1.2.4 Pair Production 16
 1.3 Wave Aspect of Particles 18
 1.3.1 de Broglie’s Hypothesis: Matter Waves 18
 1.3.2 Experimental Confirmation of de Broglie’s Hypothesis . 18
 1.3.3 Matter Waves for Macroscopic Objects 20
 1.4 Particles versus Waves 22
 1.4.1 Classical View of Particles and Waves 22
 1.4.2 Quantum View of Particles and Waves 23
 1.4.3 Wave–Particle Duality: Complementarity 26
 1.4.4 Principle of Linear Superposition 27
 1.5 Indeterministic Nature of the Microphysical World 27
 1.5.1 Heisenberg’s Uncertainty Principle 28
 1.5.2 Probabilistic Interpretation 30
 1.6 Atomic Transitions and Spectroscopy 30
 1.6.1 Rutherford Planetary Model of the Atom 30
 1.6.2 Bohr Model of the Hydrogen Atom 31
 1.7 Quantization Rules 36
 1.8 Wave Packets ... 38
 1.8.1 Localized Wave Packets 39
 1.8.2 Wave Packets and the Uncertainty Relations 42
 1.8.3 Motion of Wave Packets 43
 1.9 Concluding Remarks 54
 1.10 Solved Problems 54
 1.11 Exercises ... 71
2 Mathematical Tools of Quantum Mechanics 79

2.1 Introduction .. 79

2.2 The Hilbert Space and Wave Functions 79

2.2.1 The Linear Vector Space 79

2.2.2 The Hilbert Space .. 80

2.2.3 Dimension and Basis of a Vector Space 81

2.2.4 Square-Integrable Functions: Wave Functions 84

2.3 Dirac Notation .. 84

2.4 Operators ... 89

2.4.1 General Definitions ... 89

2.4.2 Hermitian Adjoint .. 91

2.4.3 Projection Operators 92

2.4.4 Commutator Algebra 93

2.4.5 Uncertainty Relation between Two Operators 95

2.4.6 Functions of Operators 97

2.4.7 Inverse and Unitary Operators 98

2.4.8 Eigenvalues and Eigenvectors of an Operator 99

2.4.9 Infinitesimal and Finite Unitary Transformations101

2.5 Representation in Discrete Bases 104

2.5.1 Matrix Representation of Kets, Bras, and Operators 105

2.5.2 Change of Bases and Unitary Transformations 114

2.5.3 Matrix Representation of the Eigenvalue Problem 117

2.6 Representation in Continuous Bases 121

2.6.1 General Treatment ... 121

2.6.2 Position Representation 123

2.6.3 Momentum Representation 124

2.6.4 Connecting the Position and Momentum Representations 124

2.6.5 Parity Operator ... 128

2.7 Matrix and Wave Mechanics 130

2.7.1 Matrix Mechanics .. 130

2.7.2 Wave Mechanics ... 131

2.8 Concluding Remarks ... 132

2.9 Solved Problems .. 133

2.10 Exercises ... 155

3 Postulates of Quantum Mechanics 165

3.1 Introduction ... 165

3.2 The Basic Postulates of Quantum Mechanics 165

3.3 The State of a System .. 167

3.3.1 Probability Density 167

3.3.2 The Superposition Principle 168

3.4 Observables and Operators 170

3.5 Measurement in Quantum Mechanics 172

3.5.1 How Measurements Disturb Systems 172

3.5.2 Expectation Values 173

3.5.3 Complete Sets of Commuting Operators (CSCO) 175

3.5.4 Measurement and the Uncertainty Relations 177
CONTENTS

3.6 Time Evolution of the System’s State 178
 3.6.1 Time Evolution Operator 178
 3.6.2 Stationary States: Time-Independent Potentials 179
 3.6.3 Schrödinger Equation and Wave Packets 180
 3.6.4 The Conservation of Probability 181
 3.6.5 Time Evolution of Expectation Values 182
3.7 Symmetries and Conservation Laws 183
 3.7.1 Infinitesimal Unitary Transformations 184
 3.7.2 Finite Unitary Transformations 185
 3.7.3 Symmetries and Conservation Laws 185
3.8 Connecting Quantum to Classical Mechanics 187
 3.8.1 Poisson Brackets and Commutators 187
 3.8.2 The Ehrenfest Theorem 189
 3.8.3 Quantum Mechanics and Classical Mechanics 190
3.9 Solved Problems ... 191
3.10 Exercises .. 209

4 One-Dimensional Problems .. 215
 4.1 Introduction ... 215
 4.2 Properties of One-Dimensional Motion 216
 4.2.1 Discrete Spectrum (Bound States) 216
 4.2.2 Continuous Spectrum (Unbound States) 217
 4.2.3 Mixed Spectrum ... 217
 4.2.4 Symmetric Potentials and Parity 218
 4.3 The Free Particle: Continuous States 218
 4.4 The Potential Step ... 220
 4.5 The Potential Barrier and Well 224
 4.5.1 The Case $E > V_0$ 224
 4.5.2 The Case $E < V_0$: Tunneling 227
 4.5.3 The Tunneling Effect 229
 4.6 The Infinite Square Well Potential 231
 4.6.1 The Asymmetric Square Well 231
 4.6.2 The Symmetric Potential Well 234
 4.7 The Finite Square Well Potential 234
 4.7.1 The Scattering Solutions ($E > V_0$) 235
 4.7.2 The Bound State Solutions ($0 < E < V_0$) 235
 4.8 The Harmonic Oscillator .. 239
 4.8.1 Energy Eigenvalues 241
 4.8.2 Energy Eigenstates 243
 4.8.3 Energy Eigenstates in Position Space 244
 4.8.4 The Matrix Representation of Various Operators 247
 4.8.5 Expectation Values of Various Operators 248
 4.9 Numerical Solution of the Schrödinger Equation 249
 4.9.1 Numerical Procedure 249
 4.9.2 Algorithm .. 251
 4.10 Solved Problems .. 252
 4.11 Exercises .. 276
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Angular Momentum</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>283</td>
</tr>
<tr>
<td>5.2</td>
<td>Orbital Angular Momentum</td>
<td>283</td>
</tr>
<tr>
<td>5.3</td>
<td>General Formalism of Angular Momentum</td>
<td>285</td>
</tr>
<tr>
<td>5.4</td>
<td>Matrix Representation of Angular Momentum</td>
<td>290</td>
</tr>
<tr>
<td>5.5</td>
<td>Geometrical Representation of Angular Momentum</td>
<td>293</td>
</tr>
<tr>
<td>5.6</td>
<td>Spin Angular Momentum</td>
<td>295</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Experimental Evidence of the Spin</td>
<td>295</td>
</tr>
<tr>
<td>5.6.2</td>
<td>General Theory of Spin</td>
<td>297</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Spin 1/2 and the Pauli Matrices</td>
<td>298</td>
</tr>
<tr>
<td>5.7</td>
<td>Eigenfunctions of Orbital Angular Momentum</td>
<td>301</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Eigenfunctions and Eigenvalues of \hat{L}_z</td>
<td>302</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Eigenfunctions of \hat{L}^2</td>
<td>303</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Properties of the Spherical Harmonics</td>
<td>307</td>
</tr>
<tr>
<td>5.8</td>
<td>Solved Problems</td>
<td>310</td>
</tr>
<tr>
<td>5.9</td>
<td>Exercises</td>
<td>325</td>
</tr>
<tr>
<td>6</td>
<td>Three-Dimensional Problems</td>
<td>333</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>333</td>
</tr>
<tr>
<td>6.2</td>
<td>3D Problems in Cartesian Coordinates</td>
<td>333</td>
</tr>
<tr>
<td>6.2.1</td>
<td>General Treatment: Separation of Variables</td>
<td>333</td>
</tr>
<tr>
<td>6.2.2</td>
<td>The Free Particle</td>
<td>335</td>
</tr>
<tr>
<td>6.2.3</td>
<td>The Box Potential</td>
<td>336</td>
</tr>
<tr>
<td>6.2.4</td>
<td>The Harmonic Oscillator</td>
<td>338</td>
</tr>
<tr>
<td>6.3</td>
<td>3D Problems in Spherical Coordinates</td>
<td>340</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Central Potential: General Treatment</td>
<td>340</td>
</tr>
<tr>
<td>6.3.2</td>
<td>The Free Particle in Spherical Coordinates</td>
<td>343</td>
</tr>
<tr>
<td>6.3.3</td>
<td>The Spherical Square Well Potential</td>
<td>346</td>
</tr>
<tr>
<td>6.3.4</td>
<td>The Isotropic Harmonic Oscillator</td>
<td>347</td>
</tr>
<tr>
<td>6.3.5</td>
<td>The Hydrogen Atom</td>
<td>351</td>
</tr>
<tr>
<td>6.3.6</td>
<td>Effect of Magnetic Fields on Central Potentials</td>
<td>365</td>
</tr>
<tr>
<td>6.4</td>
<td>Concluding Remarks</td>
<td>368</td>
</tr>
<tr>
<td>6.5</td>
<td>Solved Problems</td>
<td>368</td>
</tr>
<tr>
<td>6.6</td>
<td>Exercises</td>
<td>385</td>
</tr>
<tr>
<td>7</td>
<td>Rotations and Addition of Angular Momenta</td>
<td>391</td>
</tr>
<tr>
<td>7.1</td>
<td>Rotations in Classical Physics</td>
<td>391</td>
</tr>
<tr>
<td>7.2</td>
<td>Rotations in Quantum Mechanics</td>
<td>393</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Infinitesimal Rotations</td>
<td>393</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Finite Rotations</td>
<td>395</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Properties of the Rotation Operator</td>
<td>396</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Euler Rotations</td>
<td>397</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Representation of the Rotation Operator</td>
<td>398</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Rotation Matrices and the Spherical Harmonics</td>
<td>400</td>
</tr>
<tr>
<td>7.3</td>
<td>Addition of Angular Momenta</td>
<td>403</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Addition of Two Angular Momenta: General Formalism</td>
<td>403</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Calculation of the Clebsch–Gordan Coefficients</td>
<td>409</td>
</tr>
</tbody>
</table>
CONTENTS

- **7.3.3** Coupling of Orbital and Spin Angular Momenta .. 415
- **7.3.4** Addition of More Than Two Angular Momenta ... 419
- **7.3.5** Rotation Matrices for Coupling Two Angular Momenta 420
- **7.3.6** Isospin .. 422

- **7.4** Scalar, Vector, and Tensor Operators ... 425
 - **7.4.1** Scalar Operators ... 426
 - **7.4.2** Vector Operators ... 426
 - **7.4.3** Tensor Operators: Reducible and Irreducible Tensors 428
 - **7.4.4** Wigner–Eckart Theorem for Spherical Tensor Operators 430

- **7.5** Solved Problems ... 434
- **7.6** Exercises .. 450

- **8** Identical Particles .. 455
 - **8.1** Many-Particle Systems .. 455
 - **8.1.1** Schrödinger Equation .. 455
 - **8.1.2** Interchange Symmetry ... 457
 - **8.1.3** Systems of Distinguishable Noninteracting Particles 458
 - **8.2** Systems of Identical Particles .. 460
 - **8.2.1** Identical Particles in Classical and Quantum Mechanics 460
 - **8.2.2** Exchange Degeneracy ... 462
 - **8.2.3** Symmetrization Postulate .. 463
 - **8.2.4** Constructing Symmetric and Antisymmetric Functions 464
 - **8.2.5** Systems of Identical Noninteracting Particles .. 464
 - **8.3** The Pauli Exclusion Principle ... 467
 - **8.4** The Exclusion Principle and the Periodic Table .. 469
 - **8.5** Solved Problems ... 475
 - **8.6** Exercises .. 484

- **9** Approximation Methods for Stationary States ... 489
 - **9.1** Introduction .. 489
 - **9.2** Time-Independent Perturbation Theory .. 490
 - **9.2.1** Nondegenerate Perturbation Theory ... 490
 - **9.2.2** Degenerate Perturbation Theory ... 496
 - **9.2.3** Fine Structure and the Anomalous Zeeman Effect 499
 - **9.3** The Variational Method .. 507
 - **9.4** The Wentzel–Kramers–Brillouin Method .. 515
 - **9.4.1** General Formalism .. 515
 - **9.4.2** Bound States for Potential Wells with No Rigid Walls 518
 - **9.4.3** Bound States for Potential Wells with One Rigid Wall 524
 - **9.4.4** Bound States for Potential Wells with Two Rigid Walls 525
 - **9.4.5** Tunneling through a Potential Barrier .. 528
 - **9.5** Concluding Remarks .. 530
 - **9.6** Solved Problems ... 531
 - **9.7** Exercises .. 562
10 Time-Dependent Perturbation Theory

10.1 Introduction ... 571
10.2 The Pictures of Quantum Mechanics 571
 10.2.1 The Schrödinger Picture 572
 10.2.2 The Heisenberg Picture 572
 10.2.3 The Interaction Picture 573
10.3 Time-Dependent Perturbation Theory 574
 10.3.1 Transition Probability 576
 10.3.2 Transition Probability for a Constant Perturbation 577
 10.3.3 Transition Probability for a Harmonic Perturbation 579
10.4 Adiabatic and Sudden Approximations 582
 10.4.1 Adiabatic Approximation 582
 10.4.2 Sudden Approximation 583
10.5 Interaction of Atoms with Radiation 586
 10.5.1 Classical Treatment of the Incident Radiation 587
 10.5.2 Quantization of the Electromagnetic Field 588
 10.5.3 Transition Rates for Absorption and Emission of Radiation 591
 10.5.4 Transition Rates within the Dipole Approximation 592
 10.5.5 The Electric Dipole Selection Rules 593
 10.5.6 Spontaneous Emission 594
10.6 Solved Problems ... 597
10.7 Exercises .. 613

11 Scattering Theory

11.1 Scattering and Cross Section 617
 11.1.1 Connecting the Angles in the Lab and CM frames 618
 11.1.2 Connecting the Lab and CM Cross Sections 620
11.2 Scattering Amplitude of Spinless Particles 621
 11.2.1 Scattering Amplitude and Differential Cross Section 623
 11.2.2 Scattering Amplitude 624
11.3 The Born Approximation 628
 11.3.1 The First Born Approximation 628
 11.3.2 Validity of the First Born Approximation 629
11.4 Partial Wave Analysis 631
 11.4.1 Partial Wave Analysis for Elastic Scattering 631
 11.4.2 Partial Wave Analysis for Inelastic Scattering 635
11.5 Scattering of Identical Particles 636
11.6 Solved Problems ... 639
11.7 Exercises .. 650

A The Delta Function

A.1 One-Dimensional Delta Function 653
 A.1.1 Various Definitions of the Delta Function 653
 A.1.2 Properties of the Delta Function 654
 A.1.3 Derivative of the Delta Function 655
A.2 Three-Dimensional Delta Function 656
CONTENTS

B Angular Momentum in Spherical Coordinates 657
 B.1 Derivation of Some General Relations 657
 B.2 Gradient and Laplacian in Spherical Coordinates 658
 B.3 Angular Momentum in Spherical Coordinates 659

C C++ Code for Solving the Schrödinger Equation 661

Index 665
Preface

Preface to the Second Edition

It has been eight years now since the appearance of the first edition of this book in 2001. During this time, many courteous users—professors who have been adopting the book, researchers, and students—have taken the time and care to provide me with valuable feedback about the book. In preparing the second edition, I have taken into consideration the generous feedback I have received from these users. To them, and from the very outset, I want to express my deep sense of gratitude and appreciation.

The underlying focus of the book has remained the same: to provide a well-structured and self-contained, yet concise, text that is backed by a rich collection of fully solved examples and problems illustrating various aspects of nonrelativistic quantum mechanics. The book is intended to achieve a double aim: on the one hand, to provide instructors with a pedagogically suitable teaching tool and, on the other, to help students not only master the underpinnings of the theory but also become effective practitioners of quantum mechanics.

Although the overall structure and contents of the book have remained the same upon the insistence of numerous users, I have carried out a number of streamlining, surgical type changes in the second edition. These changes were aimed at fixing the weaknesses (such as typos) detected in the first edition while reinforcing and improving on its strengths. I have introduced a number of sections, new examples and problems, and new material; these are spread throughout the text. Additionally, I have operated substantive revisions of the exercises at the end of the chapters; I have added a number of new exercises, jettisoned some, and streamlined the rest. I may underscore the fact that the collection of end-of-chapter exercises has been thoroughly classroom tested for a number of years now.

The book has now a collection of almost six hundred examples, problems, and exercises. Every chapter contains: (a) a number of solved examples each of which is designed to illustrate a specific concept pertaining to a particular section within the chapter, (b) plenty of fully solved problems (which come at the end of every chapter) that are generally comprehensive and, hence, cover several concepts at once, and (c) an abundance of unsolved exercises intended for homework assignments. Through this rich collection of examples, problems, and exercises, I want to empower the student to become an independent learner and an adept practitioner of quantum mechanics. Being able to solve problems is an unfailing evidence of a real understanding of the subject.

The second edition is backed by useful resources designed for instructors adopting the book (please contact the author or Wiley to receive these free resources).

The material in this book is suitable for three semesters—a two-semester undergraduate course and a one-semester graduate course. A pertinent question arises: How to actually use
the book in an undergraduate or graduate course(s)? There is no simple answer to this question as this depends on the background of the students and on the nature of the course(s) at hand. First, I want to underscore this important observation: As the book offers an abundance of information, every instructor should certainly select the topics that will be most relevant to her/his students; going systematically over all the sections of a particular chapter (notably Chapter 2), one might run the risk of getting bogged down and, hence, ending up spending too much time on technical topics. Instead, one should be highly selective. For instance, for a one-semester course where the students have not taken modern physics before, I would recommend to cover these topics: Sections 1.1–1.6; 2.2.2, 2.2.4, 2.3, 2.4.1–2.4.8, 2.5.1, 2.5.3, 2.6.1–2.6.2, 2.7; 3.2–3.6; 4.3–4.8; 5.2–5.4, 5.6–5.7; and 6.2–6.4. However, if the students have taken modern physics before, I would skip Chapter 1 altogether and would deal with these sections: 2.2.2, 2.2.4, 2.3, 2.4.1–2.4.8, 2.5.1, 2.5.3, 2.6.1–2.6.2, 2.7; 3.2–3.6; 4.3–4.8; 5.2–5.4, 5.6–5.7; 6.2–6.4; 9.2.1–9.2.2, 9.3, and 9.4. For a two-semester course, I think the instructor has plenty of time and flexibility to maneuver and select the topics that would be most suitable for her/his students; in this case, I would certainly include some topics from Chapters 7–11 as well (but not all sections of these chapters as this would be unrealistically time demanding). On the other hand, for a one-semester graduate course, I would cover topics such as Sections 1.7–1.8; 2.4.9, 2.6.3–2.6.5; 3.7–3.8; 4.9; and most topics of Chapters 7–11.

Acknowledgments
I have received very useful feedback from many users of the first edition; I am deeply grateful and thankful to everyone of them. I would like to thank in particular Richard Lebed (Arizona State University) who has worked selflessly and tirelessly to provide me with valuable comments, corrections, and suggestions. I want also to thank Jearl Walker (Cleveland State University)—the author of The Flying Circus of Physics and of the Halliday–Resnick–Walker classics, Fundamentals of Physics—for having read the manuscript and for his wise suggestions; Milton Cha (University of Hawaii System) for having proofread the entire book; Felix Chen (Powerwave Technologies, Santa Ana) for his reading of the first 6 chapters. My special thanks are also due to the following courteous users/readers who have provided me with lists of typos/errs they have detected in the first edition: Thomas Sayetta (East Carolina University), Moritz Braun (University of South Africa, Pretoria), David Berkowitz (California State University at Northridge), John Douglas Hey (University of KwaZulu-Natal, Durban, South Africa), Richard Arthur Dudley (University of Calgary, Canada), Andrea Durlo (founder of the A.I.F. (Italian Association for Physics Teaching), Ferrara, Italy), and Rick Miranda (Netherlands). My deep sense of gratitude goes to M. Bulut (University of Alabama at Birmingham) and to Heiner Mueller-Krumbhaar (Forschungszentrum Juelich, Germany) and his Ph.D. student C. Gugenberger for having written and tested the C++ code listed in Appendix C, which is designed to solve the Schrödinger equation for a one-dimensional harmonic oscillator and for an infinite square-well potential.

Finally, I want to thank my editors, Dr. Andy Slade, Celia Carden, and Alexandra Carrick, for their consistent hard work and friendly support throughout the course of this project.

N. Zettili
Jacksonville State University, USA
January 2009
Preface to the First Edition

Books on quantum mechanics can be grouped into two main categories: textbooks, where the focus is on the formalism, and purely problem-solving books, where the emphasis is on applications. While many fine textbooks on quantum mechanics exist, problem-solving books are far fewer. It is not my intention to merely add a text to either of these two lists. My intention is to combine the two formats into a single text which includes the ingredients of both a textbook and a problem-solving book. Books in this format are practically nonexistent. I have found this idea particularly useful, for it gives the student easy and quick access not only to the essential elements of the theory but also to its practical aspects in a unified setting.

During many years of teaching quantum mechanics, I have noticed that students generally find it easier to learn its underlying ideas than to handle the practical aspects of the formalism. Not knowing how to calculate and extract numbers out of the formalism, one misses the full power and utility of the theory. Mastering the techniques of problem-solving is an essential part of learning physics. To address this issue, the problems solved in this text are designed to teach the student how to calculate. No real mastery of quantum mechanics can be achieved without learning how to derive and calculate quantities.

In this book I want to achieve a double aim: to give a self-contained, yet concise, presentation of most issues of nonrelativistic quantum mechanics, and to offer a rich collection of fully solved examples and problems. This unified format is not without cost. Size! Judicious care has been exercised to achieve conciseness without compromising coherence and completeness.

This book is an outgrowth of undergraduate and graduate lecture notes I have been supplying to my students for about one decade; the problems included have been culled from a large collection of homework and exam exercises I have been assigning to the students. It is intended for senior undergraduate and first-year graduate students. The material in this book could be covered in three semesters: Chapters 1 to 5 (excluding Section 3.7) in a one-semester undergraduate course; Chapter 6, Section 7.3, Chapter 8, Section 9.2 (excluding fine structure and the anomalous Zeeman effect), and Sections 11.1 to 11.3 in the second semester; and the rest of the book in a one-semester graduate course.

The book begins with the experimental basis of quantum mechanics, where we look at those atomic and subatomic phenomena which confirm the failure of classical physics at the microscopic scale and establish the need for a new approach. Then come the mathematical tools of quantum mechanics such as linear spaces, operator algebra, matrix mechanics, and eigenvalue problems; all these are treated by means of Dirac’s bra-ket notation. After that we discuss the formal foundations of quantum mechanics and then deal with the exact solutions of the Schrödinger equation when applied to one-dimensional and three-dimensional problems. We then look at the stationary and the time-dependent approximation methods and, finally, present the theory of scattering.

I would like to thank Professors Ismail Zahed (University of New York at Stony Brook) and Gerry O. Sullivan (University College Dublin, Ireland) for their meticulous reading and comments on an early draft of the manuscript. I am grateful to the four anonymous reviewers who provided insightful comments and suggestions. Special thanks go to my editor, Dr Andy Slade, for his constant support, encouragement, and efficient supervision of this project.

I want to acknowledge the hospitality of the Center for Theoretical Physics of MIT, Cambridge, for the two years I spent there as a visitor. I would like to thank in particular Professors Alan Guth, Robert Jaffee, and John Negele for their support.
Note to the student

We are what we repeatedly do. Excellence, then, is not an act, but a habit.

Aristotle

No one expects to learn swimming without getting wet. Nor does anyone expect to learn it by merely reading books or by watching others swim. Swimming cannot be learned without practice. There is absolutely no substitute for throwing yourself into water and training for weeks, or even months, till the exercise becomes a smooth reflex.

Similarly, physics *cannot be learned passively*. Without tackling various challenging problems, the student has no other way of testing the quality of his or her understanding of the subject. Here is where the student gains the sense of satisfaction and involvement produced by a genuine understanding of the underlying principles. *The ability to solve problems is the best proof of mastering the subject.* As in swimming, the more you solve problems, the more you sharpen and fine-tune your problem-solving skills.

To derive full benefit from the examples and problems solved in the text, avoid consulting the solution too early. If you cannot solve the problem after your first attempt, try again! If you look up the solution only after several attempts, it will remain etched in your mind for a long time. But if you manage to solve the problem on your own, you should still compare your solution with the book’s solution. You might find a shorter or more elegant approach.

One important observation: as the book is laden with a rich collection of fully solved examples and problems, one should absolutely avoid the temptation of memorizing the various techniques and solutions; instead, one should focus on understanding the concepts and the underpinnings of the formalism involved. It is not my intention in this book to teach the student a number of tricks or techniques for acquiring good grades in quantum mechanics classes without genuine understanding or mastery of the subject; that is, I didn’t mean to teach the student how to pass quantum mechanics exams without a deep and lasting understanding. However, the student who focuses on understanding the underlying foundations of the subject and on reinforcing that by solving numerous problems and thoroughly understanding them will doubtlessly achieve a double aim: reaping good grades as well as obtaining a sound and long-lasting education.

N. Zettili